

INTRODUCCIÓN

A LA GEOTECNIA

Particulas sólidas y oquedades

Diagrama de fases

ABIMAEL CRUZ ALAVEZ

MORLIS

Todos los temas tratados en este libro se presentan con un enfoque reflexivo, lo cual es un aspecto indispensable para la solución de problemas prácticos en la Ingeniería Civil. Asimismo, el autor realiza un esfuerzo tendiente a definir claramente algunos términos y conceptos a fin de lograr una mayor comprensión de los temas, métodos y teorías sobre los que se sustenta la Geotecnia. Esta obra, seguramente despertará el interés de los jóvenes ingenieros en esta rama del conocimiento, pues proporciona las bases teóricas para enfoques modernos y futuros de esta disciplina y, sin duda, será una referencia de consulta permanente para los estudiantes interesados en incrementar sus conocimientos en la Ingeniería Geotécnica.

Dr. Moisés Juárez Camarena
Presidente de la Mesa Directiva 2019-2020 de la
Sociedad Mexicana de Ingeniería Geotécnica
16 de agosto de 2019.

Prólogo

Hace 45 años el autor no tenía mayor interés en la geotecnia, sólo lo que representaba como asignatura de una carrera profesional, Ingeniería Civil. Una baja calificación obtenida en un examen ordinario, fue lo que llevó a poner mayor atención en el primer curso de la Mecánica de Suelos. Con el paso del tiempo, y por aras del destino, la primera actividad profesional fue en esa rama de la ingeniería, con el tema de compactación de suelos. Surgieron así los primeros cuestionamientos en ese tema; por ejemplo, ¿Por qué tanta diferencia de la energía de compactación entre la prueba Proctor Estándar y la Modificada? ¿Por qué no se había adoptado una intermedia? En etapas posteriores, ya dentro de la antigua Secretaría de Agricultura y Recursos Hidráulicos, al revisar todos los proyectos desarrollados y construidos por la anterior Secretaría de Agricultura y Ganadería, surgieron más cuestionamientos de la efectividad de los procesos de compactación; así fue como en 1985 desarrolló el programa experimental con el cual se generaron la mayor parte de las aportaciones que se presentan en el capítulo 12, con cuyo trabajo obtuvo el grado de maestro. En esta misma Dependencia aplicó los métodos de análisis de estabilidad de taludes, principalmente el Método Gráfico de integración de dovelas que se presenta en el capítulo 11, cuya versión computarizada en lenguaje Fortran, se llamaba Estabil; así como el programa de elemento finito para el análisis de estabilidad y deformaciones de cortinas de presas.

A partir de 1986, en la Comisión Federal de Electricidad, la práctica profesional lo llevaron a utilizar las teorías y métodos de análisis de pilas y pilotes de cimentación ante cargas horizontales, aplicados principalmente a torres y postes troncocónicos para líneas de transmisión de alta tensión; fue así como se generaron las aportaciones que se asientan en el capítulo 9. La aplicación, y las experiencias adquiridas, en la compactación de enrocamientos se desarrollaron en años posteriores, al participar en el diseño y supervisión de la construcción de las hidroeléctricas El Cajón y La Yesca, y en la revisión preliminar del diseño del P. H. La Parota, ésta aun no construida.

Toda la experiencia del autor, en el ejercicio profesional, estuvo ligado con la práctica de la docencia, lo que hizo posible que la confirmación y complementación de los apuntes que se iniciaron desde los cursos de maestría, llegaran a lo que hoy se presenta como un libro de texto con el nombre de Introducción a la Geotecnia, cuya intención es esa precisamente, introducir a los alumnos de ingeniería civil al fascinante campo de la geotecnia. Es posible que muchos lectores encuentren escasos ejercicios de aplicación, sin embargo, las pretensiones principales del texto son hacer énfasis en temas un poco oscuros en la actualidad y presentar nuevos planteamientos de reflexión y ayudar a preparar ingenieros reflexivos más que maquiladores.

Son entonces las experiencias e inquietudes del autor, en cuanto a la práctica actual y lo que prevé en el futuro de la geotecnia, lo que han llevado al desarrollo de este texto, con las pretensiones de presentar las bases de la Geotecnia y las directrices que considera deben servir de guía a los que se inician en el estudio de esta disciplina de la ingeniería, y tratar de aclarar términos y conceptos para

una mayor comprensión de los temas, métodos y teorías sobre las que se sustenta.

Las aplicaciones de la Geotecnia en la ingeniería civil son múltiples y variadas. Así, tenemos que se aplica en cimentaciones; en el proyecto de obras construidas con suelo y enrocamientos; estabilidad de taludes naturales, artificiales y excavaciones a cielo abierto o túneles; en estructuras enterradas y de retención; en problemas de vibraciones, explosiones y terremotos; y en la acción del agua fluida (explotación de acuíferos, tubificaciones o socavaciones internas y socavaciones en general) y congelada (heladas). Es responsabilidad del ingeniero civil resolver y prever los problemas que implican, durante el desarrollo y diseño de los proyectos, para su funcionamiento óptimo y evitar pérdidas futuras, económicas y humanas, por riesgos geológicos, sísmicos, estructurales y ecológicos.

En el capítulo 1 se hace una revisión de los conceptos básicos, desde las definiciones y componentes del suelo y de las rocas, su origen y formación, relaciones de sus distintas fases, su constitución mineralógica, características de los minerales de arcilla y sus estructuras, hasta la descripción e importancia de las propiedades índice para su identificación y posterior clasificación. Sobresalen en este capítulo la definición de suelo, las características de la fase líquida y el concepto de relación de vacíos efectiva.

En el capítulo 2 se presentan los diversos tipos y métodos de exploración y muestreo, principalmente aplicados en suelos, haciendo hincapié en los métodos de pruebas en sitio como penetración estándar con sus factores de corrección y su correlación con los parámetros de resistencia de los suelos; método del cono, penetrómetro PANDA ®, prueba de la veleta, presiómetros, piezocono y dilatómetro de Marchetti; métodos éstos que el autor augura un importante futuro.

En el capítulo 3 se presentan los criterios para identificar y clasificar los suelos, enrocamientos y rocas. Criterios granulométricos para los suelos gruesos; identificación de campo para suelos finos, los límites de Atterberg, con una explicación amplia de los criterios de plasticidad para su clasificación acorde con su comportamiento ingenieril. Se presenta la clasificación según el Sistema Unificado de Clasificación de Suelos (SUCS), con énfasis en la compresibilidad de los suelos finos, señalando la diferencia con el concepto de plasticidad. Es de suma importancia la clasificación de enrocamientos y rocas, la cual en la mayoría de los libros de geotecnia aun no ocupa un lugar de importancia; en este capítulo, se presentan los lineamientos propuestos por Marsal y colaboradores para la clasificación de los primeros; así como los criterios de clasificación de macizos rocosos bajo diversos criterios como los de Barton y Bieniawski, y los que prevalecen para la clasificación de las rocas desde el punto de vista ingenieril, según la Sociedad Internacional de Mecánica de Rocas.

En el capítulo 4 se abordan las propiedades hidráulicas de los suelos, desde el fenómeno capilar hasta el comportamiento del agua libre bajo gradientes hidráulicos, con solución y aplicación a diversos problemas de ingeniería. Se introduce el concepto de relación de vacíos efectiva para la velocidad de flujo y una expresión matemática para el cálculo del coeficiente de permeabilidad que corrige o complementa la propuesta por Hazen. En este mismo capítulo, se plantean ecuaciones para evaluar gradientes hidráulicos críticos, extendiendo el planteado originalmente por Terzaghi para suelos susceptibles a la tubificación.

En el capítulo 5 se presenta el concepto de deformaciones volumétricas y distorsionales que dan origen a diversos comportamientos de los suelos, resultando asentamientos que se manifiestan en

las estructuras que descansan sobre depósitos de estos materiales, así como los principales modelos reológicos que sustentan la solución matemática. Se hace énfasis en el modelo propuesto por el Dr. Leonardo Zeevaert, conocido como Unidad Z o Modelo Zeevaert, para explicar el comportamiento de suelos compresibles con importante manifestación viscoplástica.

El capítulo 6 presenta las bases sobre las cuales se sustentan las teorías que han permitido el desarrollo de métodos para encontrar la distribución de esfuerzos, transmitidas por las estructuras que se apoyan sobre las masas de suelo, tomando principalmente las propuestas por Boussinesq y las modificaciones desarrolladas por Westergaard, Frölich y Newmark, así como las más recientes aportaciones para aplicarse en cualquier superficie cargada.

En el capítulo 7 se abordan los criterios principales para calcular la compresibilidad de los suelos, mediante los cuales se pueden estimar los asentamientos que registran las estructuras por compresión ya sea independientes o dependientes del tiempo, esta última identificada como consolidación primaria y/o secundaria; se hace énfasis sobre la teoría desarrollada por Terzaghi y posteriormente complementada por Zeevaert, sobre todo en el concepto de consolidación secundaria. Se presentan diversos métodos para determinar la carga de preconsolidación, además de la planteada originalmente por Casagrande. También se aborda la compresibilidad de los enrocamientos.

El tema del esfuerzo cortante tanto de suelos como de enrocamientos, se aborda en el Capítulo 8. Se presenta la resistencia de los suelos, desde el punto de vista reológico, según los planteamientos propuestos por Zeevaert y las envolventes de resistencia en la falla, tomando en cuenta los criterios de Coulomb, Mohr y Terzaghi, así como el criterio de trayectoria de esfuerzos, para las diversas modalidades de pruebas triaxiales.

El capítulo 9 trata los criterios para evaluar la capacidad de carga de los suelos bajo diversas modalidades y aplicaciones de carga, las que dependen del tipo de cimentación que a su vez depende del tipo y características del suelo. Se presenta una revisión actualizada de las teorías y modelos para evaluar la capacidad de carga, tanto para cimentaciones superficiales como profundas. Como pocos textos, se presenta con cierto grado de amplitud los criterios de capacidad de carga al arrancamiento y ante cargas horizontales, esto es, ante acciones de momentos de volteo, los cuales cobran importancia en obras donde dominan estas fuerzas como es el caso de líneas de transmisión de alta tensión de energía eléctrica, con un solo soporte; en este caso, se presentan algunas adecuaciones que el autor ha desarrollado para pilas de cimentación derivadas unas del método de Broms y otras de las propuestas de Hansen y Reese. Varias expresiones matemáticas para determinar valores de factores que se emplean para evaluar la capacidad de carga, y que comúnmente se presentan mediante gráficas o tablas, han sido deducidas por el autor y se presentan en este capítulo, las cuales facilitan la toma de valores de los programas computacionales.

En el capítulo 10 se presenta el tema de empuje de tierras sobre estructuras de retención, haciendo énfasis del concepto de empuje en condiciones activas y pasivas de los suelos. En el apartado de empuje en muros de ademe o flexibles, como son las tablestacas, se presenta y plantea una adecuación para evaluar la estabilidad del fondo de excavaciones ademadas en arcillas blandas. Se presentan las soluciones de los casos más representativos de las tablestacas en cantiliver, empotradas en su base en diversos tipos de suelo.

El capítulo 11 aborda los métodos existentes para evaluar la estabilidad de taludes naturales o artificiales en diversos tipos de materiales, sobresaliendo el método de las dovelas infinitesimales que se resuelve mediante un criterio gráfico, y fácil de adecuar en un programa computacional, muy poco abordado en textos tradicionales. Se presenta un caso de análisis de estabilidad, para una estructura térrea, mediante el método de Elemento Finito. Se cuestiona el concepto del factor de seguridad ¿Es tal en verdad o es un factor de incertidumbre?.

Por último, el capítulo 12 aborda el tema inspirador inicial de este texto, la compactación de suelos finos, y también el que cerró la actividad profesional del autor, la compactación de enrocamientos. Se presenta una revisión de las aportaciones de las últimas investigaciones sobre este tema, así como los resultados obtenidos por el propio autor. Conclusiones importantes para suelos finos, como el hecho de que las curvas de óptimos, para diversas energías de compactación, resultan paralelas a las líneas de saturación, llevaron a plantear una ecuación similar a éstas para describir la curva de óptimos y con ella estimar, a partir de una sola prueba de compactación con cualquier energía, el contenido de agua óptimo para cualquier otra energía de compactación. Las relaciones del contenido de agua óptimo con la resistencia de compresión simple alcanzadas, lleva a plantear diversas ecuaciones con respecto a los pesos máximos, o relación de vacíos mínimos, para distintas energías de compactación. Se cuestiona el hecho de que se tengan pruebas patrón de compactación limitadas, sin tomar en consideración las diversas exigencias que imponen por sí mismas las diversas estructuras de ingeniería construidas con materiales térreos. Se plantea una propuesta de clasificación de suelos mediante un índice de clasificación, el cual toma en consideración el índice plástico de la fracción que pasa la malla número 40, el porcentaje de material fino que pasa la malla número 200, y la gruesa, la retenida en la misma malla. Concluye el capítulo con la compactación de enrocamientos, en cuyo apartado se presentan los resultados obtenidos tanto en pedraplenes de prueba como en la parte inicial del cuerpo de la cortina del Proyecto Hidroeléctrico Leonardo Rodríguez Alcaine (El Cajón) de la Comisión Federal de Electricidad de México; en esta parte destaca el hecho de que el enrocamiento fue producto de un banco constituido por ignimbrita y que, por tratarse de una roca porosa, se aplicó el concepto de relación de vacíos efectivos, planteado en el capítulo 1; hecho que el autor descubrió desde el inicio del proyecto y apagó controversias por este hecho.

Si esta obra es capaz de despertar el interés de los jóvenes que se inician en el campo de la geotecnia, proporciona las bases fundamentales de esta rama de la ingeniería y sirve de guía para los enfoque modernos y futuros de esta disciplina, habrá cumplido su misión, de lo contrario, solo quedará al autor pedir disculpas por distraerlos de otras obras que podrían brindarles mejores perspectivas.

Como cualquier obra humana, este libro no está exento de errores o equivocaciones y, de existir, el autor asume toda la responsabilidad y anticipadamente agradece la comprensión y colaboración del lector para el mejoramiento futuro.

Abimael Cruz Alavez 19 de marzo, 2019.

CONTENIDO

Prólogo	11	2.3 TIPOS DE EXPLORACIÓN	63
Capítulo 1		2.3.1 EXPLORACIÓN DIRECTA	64
CONCEPTOS BÁSICOS	15	2.3.1 1 Manual	64
1.1 INTRODUCCIÓN	15	2 3.1.1.1 Sondeo con barrenas	64
1.2 DEFINICIONES	18	2.3.1 1.2 Pozo a cielo abierto	65
1 2.1 EL SUELO Y LA ROCA	18	2.3.1.2 Utilizando equipo mecánico	66
1.2.2 FASES QUE CONSTITUYEN EL SUFLO Y LA ROCA	19	2 3.1 2.1 Sondeos por inyección de agua	66
1.2.2.1 Fase Sólida	19	2.3.1.2.2 Sondeo con espirales	67
1.2.2 2 Fase liquida	19	2 3.1 2.3 Método de Penetración Estándar (SPT)	69
1 3.2.2 1 Agua adsorbida	19	2 3.1 2 4 Método de Penetración Cónica (auscultaciones)	74
1.2.2.2.2 Agua Capilar	20	2.3.1 2.4.1 Estática	74
1 2 2 2 3 Agua libre	20	2.3.1 2.4.2 Dinámica	78
1.2.2 3 Fase gaseosa	21	2.3.1.2.5 Sondeos con extracción de muestras en	
123LA GEOTECNIA	21	tubos de pared delgada	80
1.3 APLICACIONES	23	2.3.1.2.5.1 Tube Shelby	80
1.3.1 CIMENTACIONES	23	2 3.1 2.5.2 Muestreador de Pistón	82
1 3 2 TERRAPLENES Y ENROCAMIENTOS	23	2.3 1.2 5.3 Muestreador con hojas delgadas de metal	83
1 3.3 EXCAVACIONES	23	2.3.1 2.5.4 Muestreador Denison	84
1 3.4 ESTRUCTURAS ENTERRADAS Y DE RETENCIÓN	23	2.3.1.2.5 5 Muestreador Pitcher	85
1 3.5 PROBLEMAS DE VIBRACIONES	23	2.3.1.2.6 Sondeos rotatorios	85
1.3.6 PROBLEMAS DEBIDOS A LA ACCIÓN DEL AGUA	24	2.3.1 2.7 Perforaciones en boleos y gravas	86
1.4 ORIGEN Y FORMACION DE ROCAS Y SUELOS	24	2.3.1.2.8 Muestreo profundo de arenas	86
1.4.1 EL GLOBO TERRESTRE	24	2.3.2 EXPLORACIÓN INDIRECTA (MÉTODOS GEOFÍSICOS)	87
1.4.2 ORIGEN DE LAS ROCAS	25	2.3.2 1 Método Sísmico	88
1 4.2 1 Rocas igneas	25	2 3.2.2 Método de Resistividad Eléctrica	90
14.2.2 Rocas sedimentarias	26	2.3.2.3 Método de Geo-Radar	92
1.4.2.3 Rocas metamorficas	27	2.3.2.4 Métodos Magnético y Gravimétrico	92
1 4 3 MINERALES DE LAS ROCAS	27	2.3.3 PRUEBAS DE CAMPO	92
1.4.4 ORIGEN DEL SUELO	29	2.3.3.1 Prueba de la Veleta	94
1.4.4.1 Suelos residuales y suelos transportados	30	2.3.3.2 Pruebas con Presiómetros	98
1.4.4.2 Minerales que constituyen la fase solida del suelo	32	2.3.3.3 Prueba de piezocono	101
1.5 RELACIONES VOLUMÉTRICAS, GRAVIMÉTRICAS		2.3.3.4 Dilatômetro de Marchetti (DMT)	104
Y DENSIDADES	37	Capítulo 3	
1 5 1 ESQUEMA DE FASES DEL SUELO	38	CLASIFICACIÓN DE SUELOS, ENROCAMIENTOS Y ROCAS	111
1.5.2 RELACIONES DE FASES	39	3.1 INTRODUCCIÓN	111
1521 Volumetricas	39	3.2 IDENTIFICACIÓN Y CLASIFICACIÓN DE SUELOS	111
1.5.2.2 Gravimetricas	42	3.2.1 PRIJEBAS DE CAMPO PARA IDENTIFICACIÓN DE SUELOS	112
152 3 Pesos y volumenes	42	3.2.2 PRUEBAS DE LABORATORIO PARA IDENTIFICACIÓN	
1.5.2.4 Masas y volúmenes	45	DE SIJELOS	113
1.5.2.5 Otros Conceptos	46	3.2.2.1 Suelos gruesos	114
1.5.3 EJERCICIOS NUMÉRICOS	47	3.2.2.1.1 Granulometria	114
1.5.4 ESTRUCTURAS DEL SUELO	51	3.2.2.1.1 1 Análisis con mallas	114
1.6 BASES PARA LA IDENTIFICACIÓN DE SUELOS	54	3.2.2.1.1.2 Análisis con hidrómetro	117
1.7 IMPORTANCIA DE LAS PROPIEDADES ÍNDICE	56	3.2.2.2 Suelos finos	118
Capitulo 2		3.2.2.2.1 Limites de Atterberg	118
EXPLORACIÓN Y MUESTREO DE SUELOS Y ROCAS	59	3 2 2 2.2 La plasticidad de los suelos	127
2.1 INTRODUCCIÓN	59	3.2.2.2.1 La plasticidad función de la consistencia	100
2 2 PROGRAMA DE EXPLORACION	61	de los suelos	128

3.2.2.2.2 La plasticidad función del comportamiento		4.15.2 POZOS DE EXTRACCION CON FLUJO ESTABLECIDO	
esfuerzo - deformación	134	EN UN ACUÍFERO LIBRE	217
3.2.3 CLASIFICACIÓN DE SUELOS SEGÚN EL SUCS	139	4.15.3 REDES DE FLUJO PARA POZOS DE EXTRACCIÓN	219
3.3 CLASIFICACIÓN DE ENROCAMIENTOS	145	4.15.4 CONJUNTO DE POZOS DE BOMBEO	222
3.3.1 PRUEBAS DE LABORATORIO	145	Capítulo 5	
3.3.2 CLASIFICACIÓN DE MARSAL	147	DEFORMACIONES VOLUMÉTRICAS Y DISTORSIONALES	
3.4 CLASIFICACIÓN DE ROCAS	148	MODELOS REOLÓGICOS	227
Capítulo 4		5.1 INTRODUCCIÓN	227
PROPIEDADES HIDRÁULICAS DE LOS SUELOS	155	5.2 PRINCIPIOS DE REOLOGÍA	229
4.1 INTRODUCCIÓN	155	5.3 MODELOS REOLÓGICOS	233
4.2 AGUA CAPILAR	156	5.4 DEFORMABILIDAD Y COMPRESIBILIDAD	241
4.2.1 TENSIÓN CAPILAR EN LOS SUELOS	158	Capitulo 6	
4.2.2 EL CONCEPTO DE CONTRACCIÓN EN LOS SUELOS	160	DISTRIBUCIÓN DE ESFUERZOS EN MASAS DE SUELO	245
4.3 AGUA LIBRE	161	6.1 INTRODUCCIÓN	245
4.3.1 CONCEPTOS GENERALES DE HIDRÁULICA	161	6.2 DISTRIBUCIÓN DE AÐ I PARA UNA CARGA PUNTUAL Q	251
4.3.2 LEY DE CONSERVACIÓN DE LA ENERGÍA Y	800	6.3 OTRAS CONDICIONES DE CARGA	256
ECUACIÓN DE BERNOULLI	161	6.4 DISTRIBUCION DE ESFUERZOS A& I PRODUCIDOS	
4.3.3 ECUACIÓN DEL GASTO EN RÉGIMEN ESTABLECIDO		POR UNA CARGA UNIFORMEMENTE REPARTIDA	
O DE CONTINUIDAD	162	EN UNA SUPERFICIE CIRCULAR	260
4.3.4 CARGAS HIDRÁULICAS	162	6.5 DISTRIBUCION DE ESFUERZOS A& I PRODUCIDOS	
4.3.5 GRADIENTE HIDRÁULICO	163	POR CARGAS UNIFORMEMENTE REPARTIDAS	
4.3.6 RELACIÓN DE 4 CON LA VELOCIDAD EN RÉGIMEN	(0.00)	EN ÁREAS POLIGONALES	268
LAMINAR Y TURBULENTO	164	6.6 PROFUNDIDAD DE DESPLANTE Y ESTADOS	
4.3.7 NUMERO DE REYNOLDS	165	DE COMPENSACIÓN	271
4.3.8 VELOCIDAD DE DESCARGA Y VELOCIDAD DE FLUJO		Capítulo 7	
EN LAS MASAS DE SUELO	165	COMPRESIBILIDAD DE SUELOS Y ENROCAMIENTOS	273
4 3.9 LEY DE DARCY Y COEFICIENTE DE PERMEABILIDAD	166	7.1 INTRODUCCIÓN	273
4.3.10 COEFICIENTE DE PERMEABILIDAD EN		7.2 CARACTERÍSTICAS DE COMPRESIBILIDAD	278
MEDIOS ESTRATIFICADOS	171	7.2.1 CARGA DE PRECONSOLIDACIÓN Y SU DETERMINACIÓN	278
4.3.11 DETERMINACIÓN DEL COEFICIENTE		7.2.1.1 Método de Casagrande	278
DE PERMEABILIDAD	173	7.2.1.2 Método brasileño	279
4 3.11.1 Permeámetro de carga constante	174	7.2.1 3 Método de Janbu	279
4.3.11.2 Permeametro de carga variable	175	7.2.1.4 Método de la energía de deformación	280
4.4 FLUJO ESTABLECIDO Y FLUJO NO ESTABLECIDO	176	7.2.1.5 Método de energía de deformación disipada (DSEM)	281
4.5 ECUACIONES HIDRODINÁMICAS EN LOS SUELOS	177	7.2.1.6 El concepto de carga crítica	283
4.6 SOLUCIÓN DE LA ECUACIÓN DE LAPLACE	180	7.2.2 CORRECCIONES DE LAS CURVAS DE COMPRESIBILIDAD	285
4.7 RED DE FLUJO, MÉTODO GRÁFICO	181	7.2.3 INFLUENCIA DE LA & EN LOS ASENTAMIENTOS	287
4.8 TRAZO DE REDES DE FLUJO	182	7.3 ASENTAMIENTOS	289
4.8.1 REGLAS PRACTICAS PARA EL TRAZO DE LAS		7.3.1 ASENTAMIENTOS INMEDIATOS	292
REDES DE FLUJO	184	7.3.2 ASENTAMIENTOS POR CONSOLIDACIÓN	298
4.8.2 CUADROS Y PUNTOS SINGULARES DE UNA		7.3.2.1 Teoría de la consolidación	298
RED DE FLUJO	185	7.3.2.2 Asentamientos por consolidación primaria	311
4.8.3 REGIONES DE FLUJO CONFINADO	188	7.3.2.3 Asentamientos por consolidación secundarla	316
4.8.4 REGIONES DE FLUJO NO CONFINADO	189	7.3.2.4 Asentamientos totales por consolidación	323
4.8.5 MEDIOS ESTRATIFICADOS Y ANISÓTROPOS	192	7.3.2.5 Asentamientos generados por aplicación	
4.8.5.1 Medios anisótropos, variación de la permeabilidad	192	paulatina de carga	323
4.8.5.2 Redes de flujo en medios anisôtropos	195	7.4 SUELOS COLAPSABLES	325
4.9 EFECTOS DESTRUCTIVOS DEL FLUJO DE AGUA		7.5 SUELOS EXPANSIVOS	328
Y MÉTODOS CORRECTIVOS	199	7.6 COMPRESIBILIDAD DE ENROCAMIENTOS	331
4.10 PRESIONES HIDRODINÁMICAS	202	Capítulo 8	
4.11 FUERZAS DE FILTRACIÓN	204	RESISTENCIA AL ESFUERZO CORTANTE	337
4.12 GRADIENTES HIDRÁULICOS CRÍTICOS	206	8.1 INTRODUCCIÓN	337
4.13 TUBIFICACIÓN O ARRASTRE DE PARTÍCULAS	207	8.2 ESFUERZOS COMBINADOS	338
4.14 FILTROS	209	8.3 CÍRCULO DE MOHR	341
4.15 FLUJO DE AGUA EN POZOS	213	8.4 CONSIDERACIONES REOLÓGICAS	342
4.15 1 POZOS DE EXTRACCIÓN CON FLUIO ESTABLECIDO		8.4.1 ELEMENTOS ELÁSTICOS	342
EN UN ACUIFERO CONFINADO	214	8.4.2 ELEMENTOS VISCOSOS	342

8.4.3 ELEMENTOS PLÁSTICOS	342	10.1 INTRODUCCIÓN	451
8.5 ENSAYES DE LABORATORIO PARA OBTENER Ф Y c	344	10.1.1 MUROS DE RETENCIÓN	451
8.5.1 PRUEBAS TRIAXIALES DE COMPRESIÓN		10.1.2 EXCAVACIONES CON ADEME	452
CONVENCIONALES	347	10.2 TIPOS DE EMPUJE DE TIERRAS	453
8.5.1.1 Ensaye no consolidado-no drenado (UU)	351	10.2.1 EMPUJE EN REPOSO	453
8.5.1.2 Ensaye consolidado-no drenado (CU)	352	10.2.2 EMPUJE ACTIVO	455
8.5.1.3 Ensaye consolidado-drenado (CD)	354	10.2.3 EMPUJE PASIVO	457
8.5.1.4 Consideraciones reológicas en las envolventes		10.3 EMPUJE DE TIERRAS SOBRE MUROS RÍGIDOS	459
de falla de pruebas triaxiales	354	10.3.1 TEORÍA DE COULOMB PARA PRESIÓN DE TIERRAS	460
8.5.2 PRUEBAS CON OTROS EQUIPOS	357	10.3.2 EFECTO DE CARGAS CONCENTRADAS	466
8.5.2.1 Ensaye de corte directo	357	10.4 ESTABILIDAD DE MUROS DE RETENCIÓN	468
8.5.2.2 Prueba de compresión simple	358	10.4.1 REVISIÓN POR VOLTEO	469
8.5.3 EQUIPOS PARA GRAVAS Y ENROCAMIENTOS	360	10.4.2 REVISIÓN POR DESLIZAMIENTO SOBRE EL	
8.5.3.1 Compressión triaxial	360	PLANO DE SU BASE	470
8.5.3 2 Extensión triaxial	361	10.4.3 REVISIÓN POR CAPACIDAD DE CARGA	471
8.5.3.3 Deformación plana	362	10.5 DEFORMACIONES Y EMPUJES EN ADEMES	
8.5.3.4 Parámetros de resistencia	363	O MUROS FLEXIBLES	473
Capítulo 9	365	10.6 EMPUJE DE TIERRAS SOBRE MUROS DE	
CAPACIDAD DE CARGA	365	TABLESTACAS EN CANTILIVER	477
9.1 INTRODUCCIÓN	365	10.6.1 SUELOS ARENOSOS	478
9.2 CARGAS EN LAS CIMENTACIONES	366	10.6.2 CASOS ESPECIALES DE MUROS EN CANTILIVER	
9.3 CIMENTACIONES SUPERFICIALES: ZAPATAS Y LOSAS	366	EMPOTRADOS EN SUELO ARENOSO	480
9.3.1 CAPACIDAD DE CARGA A COMPRESIÓN	366	10.6.2.1 Tablestaca sin nivel freático	480
9.3.2 CAPACIDAD DE CARGA AL ARRANCAMIENTO	383	10.6.2.2 Tablestaca en cantiliver simple	482
9.3.2.1 Capacidad de carga al arrancamiento		10.6.3 TABLESTACA EN CANTILIVER EMPOTRADA EN ARCILLA	482
considerando resistencia lateral	386	10.7 EMPUJE DE TIERRAS SOBRE TABLESTACAS ANCLADAS	484
9.3.2.2 Modificación para la falla del cono/cuña	388	10.7.1 TABLESTACA ANCLADA E HINCADA EN SUELO	
9.3.2.3 Capacidad de carga al arrancamiento por punzonamiento	388	ARENOSO, CRITERIO APOYO SIMPLE	485
9.3.2.4 Capacidad de carga al arrancamiento		10.7.2 TABLESTACA ANCLADA CON RELLENO DE ARENA	
considerando una pirámide o cono truncado	389	Y EMPOTRADA EN ARCILLA, CRITERIO APOYO SIMPLE	486
9.3.2.5 Método de Meyerhof y Adams	391	10.7.3 TABLESTACA ANCLADA E HINCADA EN SUELO	
9.4 CIMENTACIONES PROFUNDAS	393	ARENOSO, CRITERIO DE APOYO EMPOTRADO	487
9.4.1 PILAS	393	Capítulo 11	
9 4.1.1 Capacidad de carga a compresión	394	ESTABILIDAD DE TALUDES Y LADERAS	489
9.4.1.2 Capacidad de carga al arrancamiento	398	11.1 INTRODUCCIÓN	489
9.4.1.2.1 Modelo del cono truncado	399	11.2 CAUSAS DE LOS MOVIMIENTOS DE LAS MASAS	
9.4.1.2.2 Modelo de corte cilindrico	400	DE TIERRA	491
9.4 1.3 Capacidad de carga por carga lateral y momento	401	11.3 TIPOS DE FALLAS COMUNES	492
9.4.1.3 1 Método de Broms	403	11.3.1 FALLAS POR DESLIZAMIENTO SUPERFICIAL	492
9.4.1.3.2 Método de Hansen	406	11.3.2 DESLIZAMIENTOS EN LADERAS NATURALES	
9.4.1.3.3 Método de Reese	410	SOBRE SUPERFICIES DE FALLAS PREEXISTENTES	494
9.4.1.3.3 1Suelos cohesivos	411	11.3.3 FALLAS POR MOVIMIENTOS DEL CUERPO DEL TALUD	495
9 4.1.3.3.2 Suelos friccionantes	417	11.3.4 FLUJOS	496
9.4.1.3.3.3 Suelos cohesivos-friccionantes	421	11.3.5 FALLAS POR EROSIÓN	497
9.4.2 PILOTES	423	11.3.6 FALLAS POR LICUACIÓN	497
9.4.2.1 Capacidad de carga a compresión	423	11.3.7 FALLAS POR CAPACIDAD DE CARGA DEL	
9.4.2.1.1 Capacidad de carga por punta	423	TERRENO DE CIMENTACIÓN	497
9.4 2.1.2 Capacidad de carga por fuste	426	11.3.8 DESPRENDIMIENTOS DE ROCA	498
9.4.2 1.2.1 Resistencia por fricción en arenas	426	11.4 ANÁLISIS DE ESTABILIDAD DE TALUDES	498
9.4.2.1.2.2 Resistencia por fricción en arcillas	428	11.4.1 ANÁLISIS POR TANTEOS EN SUPERFICIES	
9.4.2 1.2.3 Fricción negativa	430	PLANAS O CIRCULARES	499
9.4.2.1.2.4 Grupo de pilotes	437	11.4.1.1 Taludes en suelos puramente friccionantes ($c = 0, \phi \neq 0$)	499
9.4.2.2 Capacidad de carga al arrancamiento	440	11.4.1.2 Taludes en suelos puramente cohesivos ($\phi = 0$, $c \neq 0$)	500
9 4.2.3 Capacidad de carga ante cargas laterales	442	11.4.1.3 Taludes en suelos con cohesión y fricción	
Capitolo 10		$(c \neq 0, \phi \neq 0)$, con esfuerzos totales	502
EMPUJE DE TIERRAS SOBRE ESTRUCTURAS		11.4 1.4 Taludes en suelos con cohesion y fricción	
DE RETENCIÓN	451	(c ± 0, φ ± 0), con esfuerzos electivos	504

11.4 1.5 Suelos estratificados	506	12.3 COMPACTACIÓN DE SUELOS GRUESOS	
11.4.1.6 Método gráfico o de integración de dovelas	507	Y ENROCAMIENTOS	565
11.4.1.7 Análisis de estabilidad de taludes con sismo	508	12.3.1 PRIMER PEDRAPLÉN DE PRUEBA P. H. EL CAJÓN	566
11.4.2 MÉTODO DE TAYLOR (EMPÍRICO)	510	12 3.2 SEGUNDO PEDRAPLÉN DE PRUEBA P. H. EL CAJÓN	567
11.4.3 ANÁLISIS DE ESTABILIDAD CON SUPERFICIES		12.3.2.1 Objetivos	567
DE FALLA COMBINADAS	513	12.3.2.2 Materiales utilizados y pruebas de voladura	568
11.4.4 FALLAS POR TRASLACIÓN	517	12.3.2.3 Equipos	568
11.4.5 MÉTODO DE ELEMENTO FINITO EN		12.3.2.4 Procedimiento seguido	568
ESTUDIOS DE ESTABILIDAD DE TALUDES	519	12.3.2.4.1 Preparación de la cimentación	568
11.5 ALGUNOS MÉTODOS PARA MEJORAR LA		12.3.2.4.2 Pruebas realizadas	568
ESTABILIDAD DE TALUDES	523	12.3.2.4.3 Secuencia de los trabajos	569
11.5.1 DISMINUIR LA INCLINACIÓN (TENDER EL TALUD)	523	12.3.2.5 Presentación de resultados	570
11.5.2 EMPLEO DE BERMAS O BANQUETAS LATERALES		12.3.2.5 1 Material 3B	570
O FRONTALES	523	12.3.2.5.2 Material T	575
11.5.3 EMPLEO DE MATERIALES LIGEROS	524	12.3.2.5.3 Conclusiones	576
11.5.4 CONSOLIDACIÓN PREVIA DE SUELOS COMPRESIBLES	525	12.4 COMPACTACIÓN DE CAMPO	577
11.5.5 EMPLEO DE MATERIALES ESTABILIZANTES	525	12.5 GRADOS DE COMPACTACIÓN	579
11.5.6 EMPLEO DE MUROS DE RETENCIÓN	525	Referencias Bibliográficas	581
11.5.7 INSTALACIÓN DE DRENAJE	525		
11.5.8 ANCLAJE	527	*	
11.5.9 SOLUCIONES ESPECIALES	528		
11.6 ¿FACTOR DE SEGURIDAD O FACTOR			
DE INCERTIDUMBRE?	529		
Capítulo 12			
COMPACTACIÓN DE SUELOS Y ENROCAMIENTOS	531		
12.1 INTRODUCCIÓN	531		
12.2 COMPACTACIÓN DE SUELOS FINOS	532		
12.2.1 OBJETIVOS DE LA COMPACTACIÓN DE LOS SUELOS	533		
12.2.2 FACTORES QUE INFLUYEN EN EL PROCESO			
DE COMPACTACIÓN	533		
12.2.2.1 El contenido de agua del suelo	533		
12.2.2.2 Naturaleza del suelo	534		
12.2.2.3 Método de compactación	537		
12.2.2.4 Energía de compactación	539		
12.2.2.5 Preparación del material	541		
12.2.2.6 Distribución de la energía de compactación	544		
12.2.2.7 Rotura de granos	544		
12.2.2.8 Otros factores	544		
12.2.3 ESTRUCTURACIÓN DE LOS SUELOS			
FINOS COMPACTADOS	545		
12.2.4 PRUEBAS DE LABORATORIO	547		
12.2.4.1 Prueba mediante impactos	547		
12.2.4.2 Prueba por amasado,	549		
12.2.4.3 Prueba mediante presión estática	550		
12.2.4.4 Prueba mediante vibrado	551		
12.2.5 ESTUDIOS EXPERIMENTALES EN SUELOS FINOS	551		
12.2.5.1 Pruebas de compactación	551		
12.2.5.2 Pruebas de compresión simple	552		
12.2.5.3 Comportamiento de los suelos estudiados	553		
12.2.5.3.1 Relación w · q	553		
12.2.5.3.2 Relaciones y drys y e war vs w	554		
12.2.5.3.3 Relacion E ₁ vs w ₄	557		
12.2.5.3.4 Relaciones Year year vs E	558		
12.2.5.3.5 Relación de q. vs w.	560		
12.2 5 3 6 Relación de q. vs Y en y en en	561		
12 2.5.3.7 Una propuesta de Clasificación	562		

ABIMAEL CRUZ ALAVEZ, originario de San Juan Bautista Jayacatlán, Etla, Oaxaca, México; es ingeniero civil con maestría en Ciencias en Mecánica de Suelos por la Escuela Superior de Ingeniería y Arquitectura (ESIA) del Instituto Politécnico Nacional (IPN) de México. Cuenta con amplia experiencia en geotecnia, al haber participado en el diseño y supervisión de la construcción de más de 50 presas de diversos tipos en la Secretaría de Agricultura y Recursos Hidráulicos (SARH) de 1979 a 1985. En la Comisión Federal de Electricidad (CFE), de 1986 a 2013, diseñó estructuras y cimentaciones de subestaciones y líneas de transmisión de energía eléctrica de alta tensión, fue subgerente de Diseño de esas mismas disciplinas; participó en el diseño y elaboración de especificaciones, en la integración de bases de licitación, evaluación de propuestas y en la supervisión de la construcción de los Proyectos Hidroeléctricos Leonardo Rodríguez Alcaine (El Cajón) y La Yesca.

Con 30 años de ejercicio de la docencia en el posgrado de Ingeniería Civil en la ESIA del IPN, dirigió 10 tesis de grado y obtuvo el premio como director de la mejor tesis (1994-1995). Ha dictado conferencias en instituciones mexicanas y extranjeras, y publicado 13 artículos técnicos en diversos medios. Es autor del libro: Introducción al Flujo de Agua en Suelos (2008).

Es socio de la Sociedad Mexicana de Ingeniería Geotécnica, antes Sociedad Mexicana de Mecánica de Suelos. Fue asociado de la Sociedad de Egresados de Ingeniería Civil de la ESIA-IPN, del Instituto de Ingenieros Eléctricos y Electrónicos (IEEE) y del Colegio de Ingenieros Civiles de México (CICM). En este último, fue codirector de Prestaciones y Seguridad Social (1993-1994), vocal del XXVI Consejo Directivo (1996-1998), secretario del Consejo Académico (1996-1998), vicepresidente del XXVII Consejo Directivo (1998-2000), presidente del Consejo Académico (1998-2000) e integrante del Grupo Visión 2025 y 2030.

